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1. 

Vibrating, rectangular plates with different combinations of boundary conditions and
circular and rectangular cutouts have been the subject of several investigations in the case
where the edges of the cutouts are free [1–3]. Vibrational characteristics of these structural
elements are of interest in many situations of engineering (aeronautical, civil, mechanical,
etc.).

On the other hand, if the boundary of the hole is not free, e.g., simply supported or
clamped, the problem of transverse vibrations is considerably more complicated from the
point of view of an analytical solution and, in general, one must make use of a numerical
approach like the powerful finite element method. The situation is similar when solving
the problem of transverse vibrations of a membrane, governed by the Helmholtz equation,
when it is fixed at both boundaries.

In the case of a membrane of regular polygonal shape with a concentric circular
boundary, solutions have been attained using the conformal mapping approach [4] or by
constructing co-ordinate functions which are null at the outer and inner boundaries [5].
For instance in the case of a square domain with a fixed concentric circular perforation
Laura et al. [5] determined the fundamental frequency coefficient by approximating the
fundamental mode of vibration by means of

c2ca =(x2 − a2
p )/(y2 − a2

p)(zx2 + y2 −R0) [A0 +A1(x2 + y2)],

where ap is the apothem and R0 is the radius of the inner boundary.
A similar approach is employed in the present study in the case of a square cutout using

a hyperelliptic† representation of a ‘‘quasi-square’’ [6] as it will be shown in the next
section. Finally, the finite element method is employed to obtain the fundamental
frequency of transverse vibration of square plates with square cutouts for the following
combinations of boundary combinations. Outer boundary SS, SS, C, and C. Inner
boundary SS, C, SS and C.

2.          

Consider the functional relation

(x̄− x̄c )n

an
1

+
(ȳ− ȳc )n

bn
1

=1 (1)

When N=2 one has the classical equation of an ellipse with its center at (x̄c , ȳc ). For n
sufficiently large and being an even number (say n=50) one has the case of a hyperelliptic
domain which is quite close to a rectangle (or a square if a1 = b1), see Figure 1.

† Also defined as ‘‘super elliptical’’ domains [6].
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Expression (1) can be expressed in the convenient form

(x− xc )n +(h1/h)n (y− yc )n = an, (2)

where

h= a/b, h1 = a1/b1, a= a1/a, b= b1/b=(a1/h1)/(a/h)= (a1/a)(h/h1)= a(h/h1),

x= x̄/a, y= ȳ/b.

Following reference [5] one can now construct the following two-term approximation for
the fundamental mode shape

W3Wa =C181(x, y)+ c282(x, y), (3)

where

81(x, y)= (x− xP)(y− yP)g(x, y),

82(x, y)= (x− xP+1)(y− yP+1)g(x, y),

g(x, y)= [(x− xc )n +(h1/h)n(y− yc )n]1/2 − a, and p is Rayleigh’s optimization parameter
[7].

It is quite easy to show that equation (3) satisfies Dirichlet’s boundary condition at the
outer and inner contours.

Use will be made now of the classical Rayleigh-Ritz method which requires minimization
of the functional

J(W)=ggD�

(W2
x̄ +W2

ȳ ) dx̄ dȳ− rv2/S ggD�

W2 dx̄ dȳ, (4)

which in terms of the dimensionless variables x and y becomes

hJ(W)=ggD

(W2
x̄ + h2W2

ȳ ) dx dy− l2 ggD

W2 dx dy, (5)

where l2 = ra2v2/S.

Figure 1. Geometry of the vibrating system under study. (a) membrane or plate executing transverse
vibrations. (b) Representation of the inner boundary: hyperelliptic domain obtained for a1 = b1 (n=50).
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Substituting equation (3) in equation (5) results in

h

2
1J
1Ci

= s
2

j=1 $ggD

(8jx8ix + h28jy8iy ) dx dy− l2 ggD

8j8i dx dy%Cj =0 for i=1, 2.

(6)

The non-triviality condition yields a 2×2 determinantal equation whose lowest root
constitutes the fundamental frequency coefficient l1. Since

l1 = l1(p) (7)

and l1 is an upper bound with respect to the exact value, by minimizing it with respect
to p one obtains an optimized value of l1 [7].

3.    

The present study makes use of the conforming rectangular element of 16 degrees of
freedom by Bogner, Fox and Schmit [8] which yields very good accuracy, as can be
ascertained from the fact that in the case where the four edges of a square plate are simply
supported one obtains V1 =zrh/D v1a2 =19·739213 and V5 =V6 =zrh/D v5,6

a2 =98·6988 when one quarter of the square plate is subdivided into a net of 10×10
elements.

When the four edges of the square plate are clamped the same discrete model yields
V1 =35·98536; V6 =132·21267. Both sets of eigenvalues practically coincide with the
results quoted by Leissa in his classical treatise [1].

In order to obtain a high accuracy in the case of the structural system under study a
convenient number of finite elements was chosen for each particular configuration, e.g.,
in the case of a square plate with a concentric, fixed cutout of half of the dimensions of
the plate, 108 elements were used for one quarter of the structural element.

4.    

Table 1 depicts values of the fundamental frequency coefficient l1 as a function of
2a1/a=2a and a/b= h in the case of concentric configurations. For all the situations,
h= h1, that is a/b= a1/b1. The effect of dynamic stiffening is clearly observed. Table 2
shows the variation of l1 as the center of a square hole with fixed edges displaces along
the x-axis in the case of a square membrane (2a=0·20) while Table 3 depicts the variation
of l1 as the center of the square cutout displaces along the diagonal of the square
membrane. Table 4 depicts the variation of the fundamental frequency coefficient of square
plates with different arrangements of edge conditions for the outer and inner boundaries,
obtained by means of the finite element method.

In view of the equivalence of vibration problems and elastic stability phenomena in the
case of polygonal plates with simply supported edges when the plate is subjected to a
hydrostatic state of in-plane stress [1], one concludes that the first row of values of Table 4
is also the critical buckling parameter Ncr a2/D. It is interesting to point out that if one
calculates the square root of the first row one obtains the values 8·61, 9·49, 10·54, and
13·46, which are the fundamental frequency coefficients of square membranes with
concentric, perfect square cutouts. The values of the first row of Table 1 of the present
study are 7·424, 8·403, 9·464, and 11·738, which are lower than the corresponding previous
eigenvalues in view of the fact that these eigenvalues correspond to square membranes with
square cutouts with rounded corners.
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T 1

Values of l1 in the case of a rectangular membrane with a concentric
rectangular cut-out with rounded corners.

h
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

2a 1 1·25 1·50 2

1/6 7·424 8·403 9·464 11·738
1/4 8·192 9·273 10·443 12·953
1/3 9·149 10·356 11·663 14·466
1/2 12·039 13·627 15·346 19·035

T 2

Values of l1 in the case of a square membrane with a square cutout when
the hole center is displaced along the x-axis (2a=0·20).

(xc , yc)
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

(0·5, 0·5) (0·6, 0·5) (0·7, 0·5) (0·8, 0·5)

7·720 7·336 6·498 5·640

T 3

Values of l1 in the case of a square membrane with a square
cutout when the center of the hole is displaced along a diagonal

of the square (2a=0·20)

(xc, yc)
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

(0·6, 0·6) (0·7, 0·7) (0·8, 0·8)

6·980 5·918 5·107

Admittedly, ‘‘infinite’’ stressses will arise in the case of plates with perfect rectangular
cutouts. If the re-entrant corners are curved, one will have regions with high concentration
of stresses and they will reduce the values of the frequency coefficients as it has been shown
by Leissa and coworkers in fundamental studies [9].

T 4

Fundamental frequency coefficients V1 = (rh/D) v1a22 for square plates with concentric
square cutouts considering different arrangements of boundary conditions and for different

values of the parameter 2a1/a (Poisson’s ratio, m=0·30)

Boundary 2a1/a
ZXXXXXCXXXXV ZXXXXXXXXXXXXCXXXXXXXXXXXXV

Outer Inner 1/6 1/4 1/3 1/2

SS SS 74·17 90·14 111·16 181·26
SS C 76·44 95·87 122·96 222·83
C SS 111·02 134·54 165·31 269·34
C C 114·52 143·22 183·07 329·58
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It is interesting to point out that by decreasing the size of the internal boundary one
obtains by means of the finite element method for 2a1/a=1/12, V1 =61·73, and for
2a1/a=1/24, V1 =56·25. When the inner boundary reduces to a point support V1 =52·66,
which is in good agreement with the result quoted by Leissa [1]: V1 =52·6.
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